Discover the most searched Machine Learning related terms and optimize your content for maximum reach. Whether you’re a blogger, a webmaster or a seo pro, understanding popular Machine Learning keywords is crucial for connecting with your target audience.
Why Machine Learning Keywords Matter :
- Boost your SEO: Incorporate relevant keywords to improve your search engine rankings.
- Create engaging content: Use popular search terms to craft content that resonates.
- Enhance marketing strategies: Tailor your campaigns to match what your audience is actively searching for.
Explore Top Machine Learning Keywords
Below, you’ll find a curated list of the most searched keywords in the Machine Learning niche, along with their global monthly search volume and CPC on Google.
Keyword | Search Volume | CPC |
---|---|---|
chatgpt | 9140000 | 1.58 |
openai | 823000 | 1.72 |
transformers | 673000 | 3.42 |
hive | 550000 | 1.38 |
dall-e | 550000 | 1.03 |
pandas | 550000 | 2.00 |
coursera | 450000 | 3.16 |
midjourney | 450000 | 1.88 |
python | 368000 | 4.25 |
credit scoring | 368000 | 7.68 |
text-to-speech | 301000 | 4.13 |
robotics | 301000 | 3.48 |
gru | 301000 | 0.00 |
bard | 246000 | 0.66 |
stable diffusion | 246000 | 1.70 |
jax | 201000 | 1.19 |
luigi | 201000 | 1.69 |
llama | 201000 | 2.12 |
boosting | 201000 | 11.85 |
google colab | 165000 | 2.82 |
gpt-4 | 165000 | 2.14 |
api | 165000 | 10.18 |
big data | 165000 | 7.75 |
artificial intelligence | 135000 | 3.38 |
docker | 135000 | 100.00 |
spark | 135000 | 1.07 |
accuracy | 110000 | 3.42 |
mongodb | 110000 | 13.57 |
algorithm | 110000 | 3.15 |
pruning | 110000 | 6.59 |
gpt | 110000 | 1.46 |
edx | 90500 | 0.95 |
convolutional neural networks | 90500 | 3.47 |
glove | 90500 | 7.12 |
gpt-3 | 90500 | 3.76 |
kubernetes | 90500 | 3.71 |
regression | 90500 | 0.00 |
palm | 90500 | 1.19 |
stacking | 90500 | 3.21 |
stan | 74000 | 1.54 |
jupyter notebook | 74000 | 2.82 |
chatbots | 74000 | 3.64 |
kaggle | 74000 | 3.03 |
data science | 74000 | 9.25 |
game theory | 60500 | 4.18 |
dvc | 60500 | 19.21 |
rest api | 49500 | 57.96 |
genomics | 49500 | 10.00 |
machine learning | 49500 | 6.88 |
yolo | 49500 | 2.32 |
text generation | 49500 | 3.29 |
hugging face | 49500 | 3.18 |
pytorch | 49500 | 4.49 |
virtual assistants | 40500 | 20.64 |
linear regression | 40500 | 4.52 |
tensorflow | 40500 | 5.23 |
bert | 40500 | 2.49 |
datacamp | 40500 | 2.01 |
nlp | 33100 | 3.86 |
neural networks | 33100 | 5.02 |
active learning | 33100 | 2.94 |
logistic regression | 33100 | 6.60 |
clustering | 33100 | 1.09 |
etl | 33100 | 10.28 |
udacity | 33100 | 19.94 |
data mining | 27100 | 17.10 |
matplotlib | 27100 | 1.71 |
gan | 27100 | 3.58 |
cassandra | 27100 | 8.32 |
decision trees | 27100 | 15.04 |
generative adversarial networks | 27100 | 3.58 |
bioinformatics | 27100 | 5.00 |
facial recognition | 22200 | 1.58 |
hadoop | 22200 | 9.72 |
numpy | 22200 | 4.29 |
data visualization | 22200 | 11.33 |
claude | 22200 | 3.83 |
airflow | 22200 | 6.50 |
confusion matrix | 18100 | 0.00 |
xgboost | 18100 | 5.01 |
deep learning | 18100 | 5.75 |
natural language processing | 18100 | 5.03 |
classification | 18100 | 5.83 |
deepmind | 18100 | 5.80 |
scikit-learn | 18100 | 4.89 |
opencv | 18100 | 10.00 |
r programming | 18100 | 9.43 |
data lake | 18100 | 7.79 |
data warehousing | 18100 | 7.27 |
maé | 18100 | 1.05 |
neo4j | 14800 | 3.79 |
roc curve | 14800 | 0.00 |
reinforcement learning | 14800 | 4.53 |
risk assessment | 14800 | 7.75 |
prefect | 14800 | 1.36 |
k-means clustering | 14800 | 4.04 |
support vector machines | 14800 | 0.00 |
principal component analysis | 14800 | 9.61 |
r-squared | 14800 | 0.00 |
random forest | 12100 | 0.00 |
long short-term memory | 12100 | 4.82 |
lstm | 12100 | 4.82 |
computer vision | 12100 | 5.58 |
a/b testing | 12100 | 19.06 |
kalman filters | 12100 | 0.00 |
predictive analytics | 12100 | 9.10 |
nosql | 12100 | 12.66 |
lda | 12100 | 0.00 |
seaborn | 12100 | 2.43 |
gradient descent | 9900 | 0.00 |
ibm watson | 9900 | 25.56 |
f1 score | 9900 | 0.00 |
alphafold | 9900 | 5.17 |
auc | 9900 | 84.56 |
sentiment analysis | 9900 | 5.97 |
automl | 9900 | 7.77 |
websockets | 9900 | 14.60 |
text summarization | 8100 | 2.16 |
causal inference | 8100 | 2.23 |
autonomous vehicles | 8100 | 5.00 |
mlops | 8100 | 9.08 |
customer segmentation | 8100 | 17.18 |
keras | 8100 | 2.23 |
mapreduce | 8100 | 15.66 |
arima | 8100 | 2.44 |
graph databases | 8100 | 5.63 |
mlflow | 8100 | 6.50 |
time series analysis | 6600 | 6.29 |
word2vec | 6600 | 0.00 |
one-hot encoding | 6600 | 0.16 |
online learning | 6600 | 14.98 |
conversational ai | 6600 | 6.94 |
knowledge graphs | 6600 | 3.86 |
aws sagemaker | 6600 | 13.58 |
weights and biases | 6600 | 0.00 |
t-sne | 6600 | 9.88 |
naive bayes | 6600 | 0.00 |
quantization | 6600 | 0.00 |
ai in healthcare | 5400 | 7.79 |
unsupervised learning | 5400 | 6.73 |
alphago | 5400 | 1.87 |
transfer learning | 5400 | 5.64 |
human-robot interaction | 5400 | 3.07 |
genetic algorithms | 5400 | 7.31 |
k-nearest neighbors | 5400 | 0.00 |
federated learning | 5400 | 11.08 |
anomaly detection | 4400 | 9.11 |
algorithmic trading | 4400 | 6.57 |
bagging | 4400 | 0.00 |
alphazero | 4400 | 2.81 |
overfitting | 4400 | 0.00 |
bias-variance tradeoff | 4400 | 0.00 |
hierarchical clustering | 4400 | 5.98 |
backpropagation | 4400 | 0.00 |
supervised learning | 4400 | 5.15 |
kubeflow | 4400 | 4.23 |
recurrent neural networks | 4400 | 5.02 |
hidden markov models | 4400 | 0.00 |
ethical ai | 3600 | 6.70 |
recommender systems | 3600 | 12.63 |
q-learning | 3600 | 4.18 |
gradient boosting | 3600 | 0.00 |
quantitative finance | 3600 | 7.42 |
nvidia ai | 3600 | 4.99 |
voice cloning | 3600 | 1.60 |
feature engineering | 3600 | 6.70 |
differential privacy | 3600 | 6.70 |
dbscan | 3600 | 0.00 |
homomorphic encryption | 3600 | 12.96 |
google brain | 3600 | 4.37 |
bayesian networks | 3600 | 6.60 |
lightgbm | 3600 | 0.00 |
graph generation | 3600 | 4.74 |
audio processing | 2900 | 2.83 |
bayesian optimization | 2900 | 0.00 |
simulated annealing | 2900 | 0.00 |
language models | 2900 | 8.88 |
machine translation | 2900 | 3.90 |
contrastive learning | 2900 | 0.00 |
topic modeling | 2900 | 5.27 |
gaussian processes | 2900 | 0.00 |
collaborative filtering | 2900 | 9.26 |
multi-armed bandits | 2900 | 0.00 |
markov chain monte carlo | 2400 | 0.00 |
image recognition | 2400 | 3.00 |
time series forecasting | 2400 | 6.03 |
word embeddings | 2400 | 0.00 |
agent-based modeling | 2400 | 4.43 |
transformer architecture | 2400 | 2.03 |
speech recognition | 2400 | 10.06 |
speech synthesis | 2400 | 1.78 |
dimensionality reduction | 2400 | 0.00 |
data annotation | 2400 | 21.45 |
social network analysis | 2400 | 7.79 |
semantic segmentation | 2400 | 7.12 |
self-supervised learning | 2400 | 7.78 |
particle filters | 2400 | 3.47 |
microsoft research | 2400 | 8.91 |
few-shot learning | 2400 | 8.17 |
neuromorphic computing | 2400 | 9.20 |
music generation | 2400 | 2.00 |
multi-modal learning | 2400 | 0.00 |
explainable ai | 2400 | 5.40 |
meta-learning | 2400 | 7.14 |
adaboost | 2400 | 0.00 |
data labeling | 1900 | 25.71 |
hyperparameter tuning | 1900 | 3.26 |
ai in education | 1900 | 5.67 |
azure machine learning | 1900 | 14.69 |
object detection | 1900 | 4.49 |
data augmentation | 1900 | 13.35 |
grid search | 1900 | 0.00 |
semi-supervised learning | 1900 | 4.25 |
named entity recognition | 1900 | 6.66 |
portfolio optimization | 1900 | 5.41 |
catboost | 1900 | 0.00 |
monte carlo tree search | 1600 | 0.00 |
zero-shot learning | 1600 | 8.57 |
complex systems | 1600 | 0.91 |
isolation forest | 1600 | 0.00 |
matrix factorization | 1600 | 0.00 |
active learning strategies | 1600 | 5.21 |
responsible ai | 1600 | 6.59 |
ai alignment | 1600 | 6.07 |
feature selection | 1600 | 0.00 |
ibm research | 1600 | 0.00 |
market basket analysis | 1600 | 18.75 |
edge ai | 1600 | 8.29 |
faster rcnn | 1600 | 0.00 |
tinyml | 1600 | 4.40 |
ai safety | 1600 | 14.59 |
cyclegan | 1300 | 0.00 |
question answering | 1300 | 1.21 |
underfitting | 1300 | 7.58 |
expectation maximization | 1300 | 0.00 |
representation learning | 1300 | 6.38 |
quantum machine learning | 1300 | 6.50 |
apriori algorithm | 1300 | 0.00 |
graph neural networks | 1300 | 5.68 |
natural language generation | 1300 | 4.85 |
ensemble learning | 1300 | 9.32 |
particle swarm optimization | 1300 | 0.00 |
data preprocessing | 1300 | 10.86 |
thompson sampling | 1300 | 0.00 |
pymc | 1300 | 0.00 |
ai regulation | 1000 | 45.06 |
ai in marketing | 1000 | 22.32 |
knowledge distillation | 1000 | 0.00 |
variational inference | 1000 | 0.00 |
sarsa | 1000 | 0.00 |
graph attention networks | 1000 | 0.00 |
conformal prediction | 1000 | 0.00 |
multi-task learning | 1000 | 0.00 |
proximal policy optimization | 1000 | 0.00 |
outlier detection | 880 | 6.15 |
style transfer | 880 | 3.03 |
network science | 880 | 4.15 |
graph convolutional networks | 880 | 0.00 |
instance segmentation | 880 | 4.95 |
attention mechanism | 880 | 0.00 |
label encoding | 880 | 0.00 |
contextual bandits | 880 | 0.00 |
random search | 880 | 0.00 |
domain adaptation | 880 | 0.00 |
continual learning | 880 | 8.30 |
entity resolution | 880 | 13.72 |
node2vec | 880 | 0.00 |
bias in ai | 720 | 4.78 |
time series anomaly detection | 720 | 9.11 |
adversarial machine learning | 720 | 8.89 |
probabilistic graphical models | 720 | 0.00 |
evolutionary algorithms | 720 | 0.00 |
swarm robotics | 720 | 7.67 |
synthetic data generation | 720 | 17.33 |
one-shot learning | 720 | 8.28 |
pose estimation | 720 | 5.85 |
ensemble methods | 720 | 0.00 |
graph clustering | 720 | 0.00 |
ai in finance | 720 | 10.00 |
neural architecture search | 720 | 22.58 |
ai in manufacturing | 720 | 15.34 |
sarima | 720 | 0.00 |
uncertainty quantification | 720 | 0.00 |
text classification | 720 | 14.98 |
policy gradients | 720 | 0.00 |
association rules | 720 | 0.00 |
interpretable machine learning | 720 | 5.96 |
muzero | 590 | 0.00 |
reinforcement learning algorithms | 590 | 4.84 |
probabilistic machine learning | 590 | 5.94 |
video generation | 590 | 3.40 |
google cloud ai | 590 | 51.86 |
content-based filtering | 590 | 21.82 |
graph embedding | 590 | 0.00 |
ai governance | 590 | 8.00 |
intel ai | 590 | 6.13 |
dcgan | 590 | 0.00 |
ai in agriculture | 480 | 6.13 |
mlops tools | 480 | 8.85 |
amazon machine learning | 480 | 8.61 |
model evaluation | 480 | 4.80 |
facebook ai research | 480 | 2.67 |
change point detection | 480 | 13.30 |
part-of-speech tagging | 480 | 0.00 |
feature scaling | 480 | 0.00 |
model deployment | 480 | 15.00 |
model monitoring | 480 | 15.00 |
ai in retail | 390 | 20.70 |
deep q-networks | 390 | 6.72 |
probabilistic programming | 390 | 7.45 |
hyperparameter optimization | 390 | 2.80 |
community detection | 390 | 0.00 |
multi-agent systems | 390 | 0.00 |
churn prediction | 390 | 12.19 |
emotion detection | 320 | 0.00 |
link prediction | 320 | 0.00 |
ai policy | 320 | 5.30 |
apple machine learning | 320 | 13.03 |
ai auditing | 260 | 10.81 |
bayesian deep learning | 260 | 4.29 |
pig | 260 | 1.36 |
dialogue systems | 210 | 0.00 |
data augmentation techniques | 210 | 8.09 |
monte carlo dropout | 170 | 0.00 |
fairness in machine learning | 170 | 4.72 |
graph classification | 170 | 0.00 |
ai risk management | 170 | 14.60 |
model compression | 170 | 4.62 |
ai transparency | 170 | 0.00 |
ai in transportation | 170 | 6.88 |
privacy-preserving machine learning | 170 | 39.45 |
graph sage | 170 | 0.00 |
extra trees | 140 | 0.00 |
computer vision for robotics | 110 | 8.23 |
sentiment classification | 110 | 0.00 |
hybrid recommender systems | 110 | 8.45 |
actor-critic methods | 110 | 0.00 |
drug discovery ai | 90 | 7.62 |
novelty detection | 90 | 0.00 |
reinforcement learning in games | 90 | 4.30 |
anomaly detection techniques | 70 | 9.11 |
medical imaging ai | 70 | 9.21 |
ai in energy | 70 | 7.16 |
protein folding prediction | 70 | 17.00 |
data drift detection | 50 | 0.00 |
ai accountability | 50 | 3.13 |
prophet | 40 | 0.00 |
concept drift detection | 30 | 5.60 |
robustness in machine learning | 30 | 0.00 |
reinforcement learning for finance | 30 | 5.27 |
cross-modal learning | 20 | 0.00 |
fraud detection | 10 | 0.00 |
mean squared error | 10 | 0.00 |
mask rcnn | 10 | 0.00 |
deeplearning.ai | 10 | 0.00 |
reinforcement learning for robotics | 10 | 0.00 |
cross-validation | 10 | 0.00 |
ensemble uncertainty | 10 | 0.00 |
comet.ml | 10 | 0.00 |
Dive Deeper with SeoLabs
Want to uncover more niche-specific keywords and stay ahead of the competition? Seolabs is a complete Seo Tools like Semrush and Ahrefs, but completely Free
• Access comprehensive keyword research tools
• Analyze keyword difficulty and competition
• Discover long-tail keyword opportunities
Start optimizing your Machine Learning content today !